Issue 120, 2015

Size dependent catalytic activities of green synthesized gold nanoparticles and electro-catalytic oxidation of catechol on gold nanoparticles modified electrode

Abstract

A green and facile method for the synthesis of gold nanoparticles (AuNPs) was developed. Phytochemicals from the aqueous extract of Fagonia indica were used to reduce and stabilize gold precursor (HAuCl4) into gold nanoparticles. Various analytical techniques were used to determine size, morphology, composition, crystallinity, and capping biomolecules of the prepared gold nanoparticles. The appearance of characteristic surface plasmon resonance peak (SPR) at 542–565 nm revealed the synthesis of AuNPs (UV-Vis spectroscopy). XRD and EDX studies confirmed the face centered cubic structure and elemental composition of the green synthesized gold nanoparticles. Average particle sizes of 50, 20, and 70 nm were obtained by using the plant concentrations of 5, 10, and 15 mL respectively, with a fixed amount of HAuCl4 (2 mM). The effect of synthesis variables (amount of plant extract and HAuCl4) on the gold nanoparticles was also studied. Under the optimized conditions (10 mL plant extract + 2 mM HAuCl4 and pH 8) the biogenic gold nanoparticles were well dispersed, small sized (15–20 nm), and mostly hexagonal in shapes. These Fagonia indica mediated Au-nanoparticles were observed to have strong catalytic activity for the photocatalytic reduction of methylene blue and chemical reduction of 4-nitrophenol. 80% of MB could be photodegraded under visible-light irradiation after 80 min, showing the excellent photocatalytic activity of biogenic gold nanoparticles. Moreover, the catalytic activity was found to be size dependent. Cyclic voltammetry (CV) indicated the electrochemical reversible oxidation of catechol at the green synthesized Au-NPs modified glassy carbon electrode. The Au-NPs modified electrode showed excellent catalytic activity with strong stability toward the electrochemical oxidation of catechol.

Graphical abstract: Size dependent catalytic activities of green synthesized gold nanoparticles and electro-catalytic oxidation of catechol on gold nanoparticles modified electrode

Article information

Article type
Paper
Submitted
20 Oct 2015
Accepted
05 Nov 2015
First published
09 Nov 2015

RSC Adv., 2015,5, 99364-99377

Author version available

Size dependent catalytic activities of green synthesized gold nanoparticles and electro-catalytic oxidation of catechol on gold nanoparticles modified electrode

A. Ahmad, Y. Wei, F. Syed, M. Imran, Z. U. H. Khan, K. Tahir, A. U. Khan, M. Raza, Q. Khan and Q. Yuan, RSC Adv., 2015, 5, 99364 DOI: 10.1039/C5RA20096B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements