Issue 130, 2015

Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors

Abstract

In this study, porous activated carbons (AC) were synthesized by an environmentally friendly technique involving chemical activation and carbonization, with an in-depth experimental study carried out to understand the electrochemical behaviour in different aqueous electrolytes (KOH, LiCl, and Na2SO4). The electrochemical performance of the AC electrode was evaluated by different techniques such as cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The results obtained demonstrate that the AC materials in different electrolytes exhibit unique double layer properties. In particular, the AC electrode tested in 6 M KOH showed the best electrochemical performance in terms of specific capacitance and efficiency. A specific capacitance of 129 F g−1 was obtained at 0.5 A g−1 with a corresponding solution resistance of 0.66 Ω in an operating voltage window of 0.8 V, with an efficiency of ∼100% at different current densities.

Graphical abstract: Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2015
Accepted
11 Dec 2015
First published
14 Dec 2015

RSC Adv., 2015,5, 107482-107487

Author version available

Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors

F. Barzegar, D. Y. Momodu, O. O. Fashedemi, A. Bello, J. K. Dangbegnon and N. Manyala, RSC Adv., 2015, 5, 107482 DOI: 10.1039/C5RA21962K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements