Issue 2, 2016

Ultrafine porous boron nitride nanofibers synthesized via a freeze-drying and pyrolysis process and their adsorption properties

Abstract

One-dimensional (1D) boron nitride (BN) nanostructures with a high aspect ratio are of prime interest due to their importance in fundamental research and wide-range potential applications. Herein we developed a facile method for the first synthesis of ultrafine porous BN nanofibers in high purity and a high yield. The method included two-steps, freeze-drying of a hot melamine/boric acid solution and post pyrolysis of the as-obtained products. The extremely rapid cooling of the hot melamine/boric acid solution during the freeze-drying process resulted in the formation of ultrafine precursors, which was the key for the final synthesis of porous BN nanofibers with downsized diameters (20–60 nm) and high aspect ratios. The as-synthesized ultrafine BN nanofibers possessed a high specific surface area and a large pore volume, which could be tuned by the pyrolysis parameters. All of these characteristics make the porous BN nanofibers promising in the applications of water treatment, hydrogen storage, catalyst support, etc. Especially, ultrafast adsorption of methylene blue (MB) in water has been demonstrated using the present porous BN nanofibers as an adsorbent.

Graphical abstract: Ultrafine porous boron nitride nanofibers synthesized via a freeze-drying and pyrolysis process and their adsorption properties

Supplementary files

Article information

Article type
Paper
Submitted
06 Nov 2015
Accepted
15 Dec 2015
First published
18 Dec 2015

RSC Adv., 2016,6, 1253-1259

Author version available

Ultrafine porous boron nitride nanofibers synthesized via a freeze-drying and pyrolysis process and their adsorption properties

J. Lin, L. Xu, Y. Huang, J. Li, W. Wang, C. Feng, Z. Liu, X. Xu, J. Zou and C. Tang, RSC Adv., 2016, 6, 1253 DOI: 10.1039/C5RA23426C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements