Issue 25, 2016

Fabrication of WO3 nanorods on graphene nanosheets for improved visible light-induced photocapacitive and photocatalytic performance

Abstract

Tungsten oxide (WO3) nanorods were grown on pure-graphene (P-graphene) nanosheets using a template-free and surfactant-less hydrothermal process at 200 °C. The synthesis and purity of the synthesized WO3 nanorods-graphene nanostructure was confirmed by UV-vis diffuse reflectance measurements, photoluminescence spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The results showed that WO3 nanorods were well distributed over the graphene nanosheets. The photocatalytic activity of the WO3 nanorods–graphene nanostructure was tested for the photocatalytic degradation of the organic model pollutant dye under visible light irradiation. The photocapacitance performance of the as-prepared nanostructure was examined by cyclic voltammetry. The superior photocapacitive and photocatalytic performances of the WO3 nanorods–graphene nanostructure were observed which was mainly attributed to the combination of WO3 nanorods with graphene nanosheets. WO3 nanorods themselves have photocatalytic properties but the overall performance of the WO3 nanorods–graphene nanostructure was significantly improved when WO3 nanorods were combined with the graphene nanosheets because of the fascinating properties such as high mobility of charge carriers and unique transport performance of graphene nanosheets. The robust nanocomposite structure, better conductivity, large surface area, and good flexibility of the WO3 nanorods–graphene nanostructure appears to be responsible for the enhanced performances. This methodology and the highlighted results open up new ways of obtaining photoactive WO3 nanorods–graphene nanostructure for potential practical applications such as visible light-induced photocatalysis and photocapacitive studies.

Graphical abstract: Fabrication of WO3 nanorods on graphene nanosheets for improved visible light-induced photocapacitive and photocatalytic performance

Supplementary files

Article information

Article type
Paper
Submitted
20 Nov 2015
Accepted
13 Feb 2016
First published
15 Feb 2016

RSC Adv., 2016,6, 20824-20833

Fabrication of WO3 nanorods on graphene nanosheets for improved visible light-induced photocapacitive and photocatalytic performance

M. E. Khan, M. M. Khan and M. H. Cho, RSC Adv., 2016, 6, 20824 DOI: 10.1039/C5RA24575C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements