Issue 9, 2016

Facile synthesis of CNT/AgI with enhanced photocatalytic degradation and antibacterial ability

Abstract

CNT/AgI composite with the diameter smaller than 1 µm was synthesized through a solvothermal method. The CNT/AgI hybrids were characterized by XRD, SEM, XPS, UV-Vis, photocurrent and so on. The results showed that the introduced CNT can greatly reduce the particle size of AgI without using surfactant. Besides, the introduced CNT transferred the electrons efficiently and enhanced the photoactivity of the CNT/AgI hybrids in degrading RhB dye. 0.3% CNT/AgI showed the highest photocatalytic activity, which was as high as about 2 times that of pure Ag/AgI. Trapping experiments and the electron spin resonance (ESR) results suggested the reactive species in the degradation process were h+, ˙OH and ˙O2. Furthermore, the CNT/AgI still showed high photoactivity after 4 cycle experiments. Photocatalytic antibacterial experiments showed that the 0.3% CNT/AgI had better antibacterial ability than pure Ag/AgI. The results showed that the CNT/AgI can be used as a dual functional material in water treatment of removing the organic pollutant and killing the bacterium at the same time.

Graphical abstract: Facile synthesis of CNT/AgI with enhanced photocatalytic degradation and antibacterial ability

Article information

Article type
Paper
Submitted
20 Nov 2015
Accepted
29 Dec 2015
First published
06 Jan 2016

RSC Adv., 2016,6, 6905-6914

Facile synthesis of CNT/AgI with enhanced photocatalytic degradation and antibacterial ability

Y. Xu, S. Huang, H. Ji, L. Jing, M. He, H. Xu, Q. Zhang and H. Li, RSC Adv., 2016, 6, 6905 DOI: 10.1039/C5RA24620B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements