Issue 48, 2015

Structural change and dynamics of colloidal gels under oscillatory shear flow

Abstract

The dynamics and rheological behavior of colloidal gels under oscillatory shear flow have been studied by using the Brownian dynamics simulations. The dynamics is studied under the oscillatory shear of small, medium, and large amplitudes. In the small amplitude oscillatory shear (SAOS) regime, the colloidal gel retains a rigid-chain network structure. The colloidal gel oscillates with small structural fluctuations and the elastic stress shows a linear viscoelastic response. In the medium amplitude oscillatory shear (MAOS) regime, the rigid network structure is ruptured, and a negative correlation between the absolute value of strain and the average bond number is observed. The elastic stress shows a transient behavior in between the SAOS and LAOS responses. In the large amplitude oscillatory shear (LAOS) regime, the colloidal gel shows a soft chain structure. Contrary to the negative correlation in the MAOS regime, the colloidal gel shows an oscillating dynamics with a positive correlation between the absolute value of strain and the average bond number. The soft chain structure exhibits no elasticity at small strain, while it shows strong elasticity at large strain. The oscillating dynamics and the rheological behavior are discussed in terms of the microstructural change from the rigid to soft chain structure.

Graphical abstract: Structural change and dynamics of colloidal gels under oscillatory shear flow

Supplementary files

Article information

Article type
Paper
Submitted
06 Jul 2015
Accepted
22 Oct 2015
First published
26 Oct 2015

Soft Matter, 2015,11, 9262-9272

Author version available

Structural change and dynamics of colloidal gels under oscillatory shear flow

J. D. Park, K. H. Ahn and S. J. Lee, Soft Matter, 2015, 11, 9262 DOI: 10.1039/C5SM01651G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements