Issue 20, 2015

Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium–sulfur batteries

Abstract

A three-dimensional (3D) carbonaceous aerogel derived from sustainable bacterial cellulose (BC) is introduced as a flexible framework for sulfur in lithium–sulfur batteries. The 3D carbonized BC (CBC) with highly interconnected nanofibrous structure exhibits good electrical conductivity and mechanical stability. The intrinsic macroporous structure of CBC contributes to a high sulfur loading of 81 wt%. Microstructure and morphology characterization results demonstrate that the sulfur species wrapped around CBC nanofibers are well dispersed. Even at such a high loading, the S/CBC composite still contains sufficient free space to accommodate the volume expansion of sulfur during lithiation. Furthermore, with an ultralight CBC interlayer inserted between the sulfur cathode and separator, significant improvement is achieved in active material utilization, cycling stability, and coulombic efficiency. The CBC interlayer can provide an extra conductive framework and adsorb migrating polysulfides to a certain degree. The CBC interlayer can also act as an additional collector for sulfur and thus could prevent the over-aggregation of insulated sulfur on the cathode surface. The good electrochemical performance reported in this work can be ascribed to the flexible 3D-interconnected nanostructure of the carbon framework and the rational design of battery configuration.

Graphical abstract: Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium–sulfur batteries

Supplementary files

Article information

Article type
Paper
Submitted
27 Feb 2015
Accepted
14 Apr 2015
First published
15 Apr 2015

J. Mater. Chem. A, 2015,3, 10910-10918

Author version available

Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium–sulfur batteries

Y. Huang, M. Zheng, Z. Lin, B. Zhao, S. Zhang, J. Yang, C. Zhu, H. Zhang, D. Sun and Y. Shi, J. Mater. Chem. A, 2015, 3, 10910 DOI: 10.1039/C5TA01515D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements