Issue 31, 2015

A–π–D–π–A based porphyrin for solution processed small molecule bulk heterojunction solar cells

Abstract

In this article, we have designed and synthesized a porphyrin with the following molecular architecture A–π–D–π–A in which ethyl rhodanine end capping groups were linked to the core porphyrin donor via an octyl thiophene-ethynylene π bridge denoted as VC117 and used it as an electron donor along with ([6,6]-phenyl C71 butyric acid methyl ester) (PC71BM) as an electron acceptor for the fabrication of solution processed organic solar cells. The solution processed BHJ organic solar cell with an optimized weight ratio of 1 : 1 VC117 : PC71BM in THF (tetrahydrofuran) showed an overall power conversion efficiency (PCE) of 2.95% with short circuit current Jsc = 8.34 mA cm−2, open circuit voltage Voc = 0.82 V and fill factor FF = 0.43. Nonetheless, when the active layer of the solar cell was processed from a mixture of 4% v/v of pyridine in THF solvent, it achieved a PCE value of 4.46% and further improved up to 5.50% after thermal annealing. This is ascribed to the enhancement of both the Jsc and FF values. The higher value of Jsc is explained by the increased absorption profile of the blend, the higher incident photon to current efficiency (IPCE) response and the better crystallinity of the active layer when processed with solvent additives and thermal annealing while the enhancement of FF is due to the better charge transport capability and the charge collection efficiency of the latter device.

Graphical abstract: A–π–D–π–A based porphyrin for solution processed small molecule bulk heterojunction solar cells

Supplementary files

Article information

Article type
Paper
Submitted
12 May 2015
Accepted
29 Jun 2015
First published
02 Jul 2015

J. Mater. Chem. A, 2015,3, 16287-16301

Author version available

A–π–D–π–A based porphyrin for solution processed small molecule bulk heterojunction solar cells

C. V. Kumar, L. Cabau, E. N. Koukaras, A. Sharma, G. D. Sharma and E. Palomares, J. Mater. Chem. A, 2015, 3, 16287 DOI: 10.1039/C5TA03463A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements