Issue 48, 2015

Remarkable capacitive behavior of a Co3O4–polyindole composite as electrode material for supercapacitor applications

Abstract

In this paper, we demonstrate a single step synthesis of cobalt oxide – conducting polyindole (Co3O4–Pind) composites by in-situ cathodic electrodeposition. The structural and morphological changes of the as-prepared Co3O4–Pind composites have been investigated using various techniques such as powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman analysis and X-ray photoelectron spectroscopy (XPS). Very interestingly, polyindole decoration over Co3O4 results in concomitant change in morphology leading to substantial improvement in the supercapacitor behavior. The electrochemical performance of Co3O4–Pind has been investigated by cyclic voltammetry, galvanostatic charge–discharge cycling and impedance analysis. The specific capacitance (SC) of Pind decorated Co3O4 is found to be 1805 F g−1 at a current density of 2 A g−1 with excellent rate capability (SC: 1625 F g−1 at a high current density of 25 A g−1) and cycling stability. This remarkable supercapacitive performance of the Co3O4–Pind composite is mainly attributed to the synergism that evolved between Co3O4 and Pind. More importantly, these electrodes are free from binders and conductive carbon which have significant impact over the gravimetric energy density of the devices.

Graphical abstract: Remarkable capacitive behavior of a Co3O4–polyindole composite as electrode material for supercapacitor applications

Article information

Article type
Paper
Submitted
05 Sep 2015
Accepted
03 Nov 2015
First published
05 Nov 2015

J. Mater. Chem. A, 2015,3, 24338-24348

Author version available

Remarkable capacitive behavior of a Co3O4–polyindole composite as electrode material for supercapacitor applications

R. P. Raj, P. Ragupathy and S. Mohan, J. Mater. Chem. A, 2015, 3, 24338 DOI: 10.1039/C5TA07046E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements