Issue 11, 2016

Manganese–cobalt hexacyanoferrate cathodes for sodium-ion batteries

Abstract

Prussian Blue analogues (PBAs) have shown promise as electrode materials for grid-scale batteries because of their high cycle life and rapid kinetics in aqueous-based electrolytes. However, these materials suffer from relatively low specific capacity, which may limit their practical applications. Here, we investigate strategies to improve the specific capacity of these materials while maintaining their cycling stability and elucidate mechanisms that enhance their electrochemical properties. In particular, we have studied the electrochemical and structural properties of manganese hexacyanoferrate (MnHCFe) and cobalt hexacyanoferrate (CoHCFe) in an aqueous, sodium-ion electrolyte. We also studied manganese–cobalt hexacyanoferrate (Mn–CoHCFe) solid solutions with different Mn/Co ratios that combine properties of both MnHCFe and CoHCFe. The materials have the characteristic open-framework crystal structure of PBAs, and their specific capacities can be significantly improved by electrochemically cycling (oxidizing and reducing) both the carbon-coordinated Fe and the nitrogen-coordinated Co or Mn ions. In situ synchrotron X-ray diffraction studies and ex situ soft X-ray absorption spectroscopy combined with an in-depth electrochemical characterization provide insight into the different electrochemical properties associated with the Fe, Co, and Mn redox couples. We show that cycling the C-coordinated Fe preserves the crystal structure and enables the outstanding kinetics and cycle life previously displayed by PBAs in aqueous electrolytes. On the other hand, the N-coordinated Co and Mn ions exhibit a slower kinetic regime due to structural distortions resulting from the weak N-coordinated crystal field, but they still contribute significantly towards increasing the specific capacity of the materials. These results provide the understanding needed to drive future development of PBAs for grid-scale applications that require extremely high cycle life and kinetics.

Graphical abstract: Manganese–cobalt hexacyanoferrate cathodes for sodium-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
23 Dec 2015
Accepted
21 Jan 2016
First published
24 Feb 2016

J. Mater. Chem. A, 2016,4, 4211-4223

Manganese–cobalt hexacyanoferrate cathodes for sodium-ion batteries

M. Pasta, R. Y. Wang, R. Ruffo, R. Qiao, H. Lee, B. Shyam, M. Guo, Y. Wang, L. A. Wray, W. Yang, M. F. Toney and Y. Cui, J. Mater. Chem. A, 2016, 4, 4211 DOI: 10.1039/C5TA10571D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements