Issue 38, 2015

KMnF3:Yb3+,Er3+@KMnF3:Yb3+ active-core–active-shell nanoparticles with enhanced red up-conversion fluorescence for polymer-based waveguide amplifiers operating at 650 nm

Abstract

We demonstrated optical amplification at 650 nm in KMnF3:Yb3+,Er3+@KMnF3:Yb3+ active-core–active-shell nanoparticle (NP) doped polymer waveguides pumped by a 976 nm laser diode for the first time. KMnF3:Yb3+,Er3+ NPs were synthesized via a solvothermal method. With the excitation of a 976 nm laser diode, bright red upconversion (UC) fluorescence was observed from KMnF3:Yb3+,Er3+ NPs owing to the existence of efficient energy transfer between Er3+ and Mn2+:2H11/2,4S3/2 + 6A14I15/2 + 4T1,2H9/2 + 6A14I13/2 + 4T1 and 4I15/2 + 4T14F9/2 + 6A1. The red UC emissions originated from the 4F9/24I15/2 transition of Er3+. Furthermore, the red UC emissions of KMnF3:18 mol% Yb3+,1 mol% Er3+@KMnF3:2 mol% Yb3+ NPs were enhanced by 7.5 times compared to that of KMnF3:18 mol% Yb3+,1 mol% Er3+ core-only NPs after coating an active shell containing Yb3+ ions on the core-only NPs. The above results showed that the active-shell could be used to not only suppress surface quenching but also transfer the pump light to the core region efficiently through Yb3+ ions inside the active-shell. By using KMnF3:18 mol% Yb3+,1 mol% Er3+@KMnF3:2 mol% Yb3+ NPs as the gain medium and doping NPs into a polymer waveguide, we constructed polymer-based waveguide amplifiers. For an input signal power of 7.4 mW and a pump power of 45.2 mW, a relative optical gain of ∼3.5 dB was obtained at 650 nm in a 17 mm-long waveguide.

Graphical abstract: KMnF3:Yb3+,Er3+@KMnF3:Yb3+ active-core–active-shell nanoparticles with enhanced red up-conversion fluorescence for polymer-based waveguide amplifiers operating at 650 nm

Supplementary files

Article information

Article type
Paper
Submitted
20 Jun 2015
Accepted
03 Sep 2015
First published
04 Sep 2015

J. Mater. Chem. C, 2015,3, 9827-9832

Author version available

KMnF3:Yb3+,Er3+@KMnF3:Yb3+ active-core–active-shell nanoparticles with enhanced red up-conversion fluorescence for polymer-based waveguide amplifiers operating at 650 nm

Y. Zhang, F. Wang, Y. Lang, J. Yin, M. Zhang, X. Liu, D. Zhang, D. Zhao, G. Qin and W. Qin, J. Mater. Chem. C, 2015, 3, 9827 DOI: 10.1039/C5TC01838B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements