Issue 3, 2017

Nanoparticle delivery of Wnt-1 siRNA enhances photodynamic therapy by inhibiting epithelial–mesenchymal transition for oral cancer

Abstract

Activation of the epithelial to mesenchymal transition (EMT) in photodynamic therapy (PDT) can lead to the recurrence and progression of tumors. To enhance the effects of PDT, it is essential to inhibit the Wnt/β-catenin signaling pathway involved in EMT progression. Herein, we used polyethylene glycol-polyethyleneimine-chlorin e6 (PEG-PEI-Ce6) nanoparticles to efficiently deliver Wnt-1 small interfering RNA (siRNA) to the cytoplasm of KB cells (oral squamous cell carcinoma) that were subjected to PDT. Wnt-1 siRNA effectively inhibited the Wnt/β-catenin signaling pathway, reducing the expression of Wnt-1, β-catenin and vimentin that are crucial to the EMT. Combined with Wnt-1 siRNA, PEG-PEI-Ce6 nanoparticle mediated PDT inhibited cell growth and enhanced the cancer cell killing effect remarkably. Our results show the promise of combination therapy of PEG-PEI-Ce6 nanoparticles for delivery of Wnt-1 siRNA along with PDT in the treatment of oral cancer.

Graphical abstract: Nanoparticle delivery of Wnt-1 siRNA enhances photodynamic therapy by inhibiting epithelial–mesenchymal transition for oral cancer

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
19 Nov 2016
Accepted
17 Dec 2016
First published
10 Jan 2017

Biomater. Sci., 2017,5, 494-501

Nanoparticle delivery of Wnt-1 siRNA enhances photodynamic therapy by inhibiting epithelial–mesenchymal transition for oral cancer

C. Ma, L. Shi, Y. Huang, L. Shen, H. Peng, X. Zhu and G. Zhou, Biomater. Sci., 2017, 5, 494 DOI: 10.1039/C6BM00833J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements