Issue 11, 2016

Influence of phase structure and morphology on the photocatalytic activity of bismuth molybdates

Abstract

Bismuth molybdate photocatalysts with different phase structures and morphologies were controllably synthesized via a refluxing method by adjusting the pH in the reaction system. Bi2MoO6 nanosheets were easily obtained under acidic conditions, while Bi3.64Mo0.36O6.55 nanoparticles were formed in circumneutral and basic solutions. The mechanism for the formation and phase transition of these two bismuth molybdates is based on tuning the pH value, which can control the growth rate along different crystal axes and the formation of different hydrolysis products that act as the initial seeds of the crystallographic phases. The photocatalytic activity of the Bi2MoO6 nanosheets for MB and MO degradation was higher than that of the Bi3.64Mo0.36O6.55 nanoparticles under visible light irradiation, and the highest photocatalytic activity was observed for the Bi2MoO6 nanosheets prepared at pH 6.0. The high visible-light photocatalytic activity of the Bi2MoO6 nanosheets arises from the easy separation and transfer of photogenerated electron–holes in the nanosheet’s structure as well as the narrow band gap, which leads to an improvement in the visible absorption ability. Electron spin resonance (ESR) and a photogenerated carrier trapping experiment suggested that both Bi2MoO6 and Bi3.64Mo0.36O6.55 had the same photocatalytic mechanism and the main oxidative species for these samples was the hydroxyl radical.

Graphical abstract: Influence of phase structure and morphology on the photocatalytic activity of bismuth molybdates

Supplementary files

Article information

Article type
Paper
Submitted
01 Feb 2016
Accepted
15 Feb 2016
First published
15 Feb 2016

CrystEngComm, 2016,18, 1976-1986

Author version available

Influence of phase structure and morphology on the photocatalytic activity of bismuth molybdates

D. Chen, Q. Hao, Z. Wang, H. Ding and Y. Zhu, CrystEngComm, 2016, 18, 1976 DOI: 10.1039/C6CE00264A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements