Issue 27, 2016

Formation and evolution of the unexpected PbI2 phase at the interface during the growth of evaporated perovskite films

Abstract

The interface chemistry and evolution of the evaporated perovskite films on ITO, pedot/ITO, Si and glass substrates are studied. As evidenced by X-ray diffraction and X-ray photoemission spectroscopy (XPS) results, the PbI2 phase is found to be inevitably formed at the very initial growth stage, even under the conditions of a MAI-rich environment. The extremely low binding energy of adsorbed MAI particles on all the above substrates, as compared to that of PbI2 particles, is responsible for the presence of the PbI2 phase at the interface. The formation of both hole and electron barriers at the interface of PbI2/MAPbI3, as evidenced by XPS measurements, could block carrier transport into the electrode and thus deteriorate solar cell performance. This result reveals the origin of the poor performance of perovskite solar cells (PSCs) by the vacuum evaporation method, and may help to improve the performance of PSCs made using the vacuum evaporation method.

Graphical abstract: Formation and evolution of the unexpected PbI2 phase at the interface during the growth of evaporated perovskite films

Supplementary files

Article information

Article type
Paper
Submitted
24 Apr 2016
Accepted
16 Jun 2016
First published
16 Jun 2016

Phys. Chem. Chem. Phys., 2016,18, 18607-18613

Formation and evolution of the unexpected PbI2 phase at the interface during the growth of evaporated perovskite films

H. Xu, Y. Wu, J. Cui, C. Ni, F. Xu, J. Cai, F. Hong, Z. Fang, W. Wang, J. Zhu, L. Wang, R. Xu and F. Xu, Phys. Chem. Chem. Phys., 2016, 18, 18607 DOI: 10.1039/C6CP02737G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements