Issue 36, 2016

EPR characterization of Mn(ii) complexes for distance determination with pulsed dipolar spectroscopy

Abstract

The four Mn(II) complexes Mn-DOTA, Mn-TAHA, Mn-PyMTA, and Mn-NO3Py were characterized by electron paramagnetic resonance (EPR), electron–nuclear double resonance (ENDOR), and relaxation measurements, to predict their relative performance in the EPR pulse dipolar spectroscopy (PDS) experiments. High spin density localization on the metal ions was proven by ENDOR on 1H, D, 14N, and 55Mn nuclei. The transverse relaxation of the Mn(II) complexes appears to be slow enough for PDS-based spin–spin distance determination. Rather advantageous ratios of T1/Tm were measured allowing for good relaxation induced dipolar modulation enhancement (RIDME) performance and, in general, fast shot repetitions in any PDS experiment. Relaxation properties of the Mn(II) complexes correlate with the strengths of their zero field splitting (ZFS). Further, a comparison of Mn(II)-DOTA and Gd(III)-DOTA based spin labels is presented. The RIDME technique to measure nanometer-range Mn(II)–Mn(II) distances in biomolecules is discussed as an alternative to the well-known DEER technique that often appears challenging in cases of metal–metal distance measurements. The use of a modified kernel function that includes dipolar harmonic overtones allows model-free computation of the Mn(II)–Mn(II) distance distributions. Mn(II)–Mn(II) distances are computed from RIDME data of Mn-rulers consisting of two Mn-PyMTA complexes connected by a rodlike spacer of defined length. Level crossing effects seem to have only a weak influence on the distance distributions computed from this set of Mn(II)–Mn(II) RIDME data.

Graphical abstract: EPR characterization of Mn(ii) complexes for distance determination with pulsed dipolar spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
13 Jul 2016
Accepted
16 Aug 2016
First published
16 Aug 2016

Phys. Chem. Chem. Phys., 2016,18, 25120-25135

EPR characterization of Mn(II) complexes for distance determination with pulsed dipolar spectroscopy

K. Keller, M. Zalibera, M. Qi, V. Koch, J. Wegner, H. Hintz, A. Godt, G. Jeschke, A. Savitsky and M. Yulikov, Phys. Chem. Chem. Phys., 2016, 18, 25120 DOI: 10.1039/C6CP04884F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements