Issue 42, 2016

Enhancement in the electrochemical performance of zirconium/phosphate bi-functional coatings on LiNi0.8Co0.15Mn0.05O2 by the removal of Li residuals

Abstract

The effect of bi-functional coatings consisting of Zr and phosphate (P) on the electrochemical performance of Li1.0Ni0.8Co0.15Mn0.05O2 (NCM) has been investigated. The presence of various types of Zr and P compounds such as oxides (ZrO2 and Li2ZrO3) and phosphates (Zr2P2O9, ZrP2O7 and LiZr2(PO4)3) in the coating was confirmed by experiments as well as density functional theory (DFT) calculations. When the NCM samples were coated with the Zr/P hybrid material, the cycle retention and the amount of removed Li residuals (LiOH, Li2CO3) were enhanced by the synergistic effect from Zr and P. The NCM sample coated with a Zr/P layer with a Zr/P ratio of 1 : 1 exhibited an increase in the initial capacity (209.3 mA h g−1) compared to the pristine sample (207.4 mA h g−1) at 0.1C, owing to the formation of the coating layer. The capacity retention of the Zr/P coated sample (92.4% at the 50th cycle) was also improved compared to that of the pristine NCM sample (90.6% at the 50th cycle). Moreover, the amount of Li residuals in the Zr/P coated NCM sample was greatly reduced from 3693 ppm (pristine NCM) to 2525 ppm (Zr/P = 5 : 5).

Graphical abstract: Enhancement in the electrochemical performance of zirconium/phosphate bi-functional coatings on LiNi0.8Co0.15Mn0.05O2 by the removal of Li residuals

Supplementary files

Article information

Article type
Paper
Submitted
01 Aug 2016
Accepted
21 Aug 2016
First published
22 Aug 2016

Phys. Chem. Chem. Phys., 2016,18, 29076-29085

Enhancement in the electrochemical performance of zirconium/phosphate bi-functional coatings on LiNi0.8Co0.15Mn0.05O2 by the removal of Li residuals

K. Park, J. Park, S. Hong, B. Choi, S. Seo, J. Park and K. Min, Phys. Chem. Chem. Phys., 2016, 18, 29076 DOI: 10.1039/C6CP05286J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements