Issue 45, 2016

Accidental degeneracy in the spiropyran radical cation: charge transfer between two orthogonal rings inducing ultra-efficient reactivity

Abstract

Photochromism of the spiropyran radical cation to the corresponding merocyanine form is investigated by a combination of electrochemical oxidation, UV/vis absorption spectroscopy, spectroelectrochemistry and first-principles calculations (TD-DFT, CAS-SCF and CAS-PT2). First, we demonstrate that the ring-opening of mono-spiropyrans occurs upon one-electron oxidation and that it can be driven photochemically as well as thermally, with trapping of the merocyanine by protonation. Second, in order to explain this experimentally observed spectroelectrochemical behaviour we suggest a theoretical mechanism based on the reactivity of the two lowest electronic excited-states, which promotes effective electron transfer from the indoline (nitrogen-ring) to the pyran (oxygen-ring) moieties (and vice versa) through a conical intersection seam of degeneracy. Characterisation of the minimum energy conical intersection on this crossing revealed that it presents a rare diabatic trapping topology. The excited state molecule cannot escape from crossing the intersection seam due to the presence of only one degeneracy-lifting coordinate that efficiently channels into the formation of the merocyanine photoproduct, so giving rise to a “kitchen sink” funnel-like effect. Therefore, assuming rapid relaxation after vertical excitation to a higher electronic state, photoconversion cannot be avoided in the D1 electronic state, which rationalises the remarkably efficient visible light driven excited-state reactivity observed experimentally.

Graphical abstract: Accidental degeneracy in the spiropyran radical cation: charge transfer between two orthogonal rings inducing ultra-efficient reactivity

Supplementary files

Article information

Article type
Paper
Submitted
08 Oct 2016
Accepted
21 Oct 2016
First published
27 Oct 2016

Phys. Chem. Chem. Phys., 2016,18, 31244-31253

Accidental degeneracy in the spiropyran radical cation: charge transfer between two orthogonal rings inducing ultra-efficient reactivity

D. Mendive-Tapia, L. Kortekaas, J. D. Steen, A. Perrier, B. Lasorne, W. R. Browne and D. Jacquemin, Phys. Chem. Chem. Phys., 2016, 18, 31244 DOI: 10.1039/C6CP06907J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements