Issue 1, 2017

An experimental and theoretical investigation of the C(1D) + D2 reaction

Abstract

In a previous joint experimental and theoretical study of the barrierless chemical reaction C(1D) + H2 at low temperatures (300–50 K) [K. M. Hickson, J.-C. Loison, H. Guo and Y. V. Suleimanov, J. Phys. Chem. Lett., 2015, 6, 4194], excellent agreement was found between experimental thermal rate constants and theoretical estimates based on ring polymer molecular dynamics (RPMD) over the two lowest singlet potential energy surfaces (PESs). Here, we extend this work to one of its isotopologues, C(1D) + D2, over the same temperature range. Experimental and RPMD results are in good agreement when contributions from both PESs to this chemical reaction are included in the RPMD simulations. The deviation between experiment and the RPMD calculations does not exceed 25% and both results exhibit a slight negative temperature dependence. The first excited 1A′′ PES plays a more important role than the ground 1A′ PES as the temperature is decreased, similar to our previous studies of the C(1D) + H2 reaction but with a more pronounced effect. The small differences in temperature dependence between the earlier and present experimental studies of C(1D) + H2/D2 reactions are discussed in terms of the use of non-equilibrium populations of ortho/para-H2/D2. We argue that RPMD provides a very convenient and reliable tool to study low-temperature chemical reactions.

Graphical abstract: An experimental and theoretical investigation of the C(1D) + D2 reaction

Supplementary files

Article information

Article type
Paper
Submitted
28 Oct 2016
Accepted
24 Nov 2016
First published
25 Nov 2016

Phys. Chem. Chem. Phys., 2017,19, 480-486

An experimental and theoretical investigation of the C(1D) + D2 reaction

K. M. Hickson and Y. V. Suleimanov, Phys. Chem. Chem. Phys., 2017, 19, 480 DOI: 10.1039/C6CP07381F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements