Issue 3, 2017

An unexpected bridge between chemical bonding indicators and electrical conductivity through the localization tensor

Abstract

While the modern theory of the insulating state shows that the conducting or insulating properties of a system can be extracted solely from the ground state properties via the so-called localization tensor (LT), no chemical reading of this important quantity has ever been offered. Here, a remarkable link between the LT and the bond orders as described by the delocalization indices (DIs) of chemical bonding theory is reported. This is achieved through a real space partition of the LT into intra- and interatomic contributions. We show that the convergence or divergence of the LT in the thermodynamic limit, which signals the insulating or conducting nature of an extended system, respectively, can be nailed down to DIs. This allows for the exploitation of traditional chemical intuition to identify essential and spectator atomic groups in determining electrical conductivity. The thermodynamic limit of the LT is controlled by the spatial decay rate of the interatomic DIs, exponential in insulators and power-law in conductors. Computational data of a few selected toy systems corroborate our results.

Graphical abstract: An unexpected bridge between chemical bonding indicators and electrical conductivity through the localization tensor

Supplementary files

Article information

Article type
Paper
Submitted
07 Nov 2016
Accepted
12 Dec 2016
First published
12 Dec 2016

Phys. Chem. Chem. Phys., 2017,19, 1790-1797

An unexpected bridge between chemical bonding indicators and electrical conductivity through the localization tensor

Á. M. Pendás, J. M. Guevara-Vela, D. M. Crespo, A. Costales and E. Francisco, Phys. Chem. Chem. Phys., 2017, 19, 1790 DOI: 10.1039/C6CP07617C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements