Issue 6, 2017

Assembly of g-C3N4-based type II and Z-scheme heterojunction anodes with improved charge separation for photoelectrojunction water oxidation

Abstract

Graphitic carbon nitride (g-C3N4) has been widely studied as a metal-free photocatalyst, leading to some excellent results; however, the rapid recombination of photogenerated charge carriers substantially limits its performance. Here, we establish two types of g-C3N4-based heterojunction (type II and nonmediator assisted Z-scheme) photoanodes on a transparent conducting substrate via coupling with rod-like and nanoparticulate WO3, respectively. In these composites, g-C3N4 film grown by electrophoretic deposition of exfoliated g-C3N4 serves as the host or guest material. The optimized type II WO3/g-C3N4 composite exhibits an enhanced photocurrent of 0.82 mA cm−2 at 1.23 V vs. RHE and an incident photo-to-current conversion efficiency (IPCE) of 33% as compared with pure WO3 nanorods (0.22 mA cm−2 for photocurrent and 15% for IPCE). Relative to pure g-C3N4 film (with a photocurrent of several microampere and an IPCE of 2%), a largely improved photocurrent of 0.22 mA cm−2 and an IPCE of 20% were acquired for the Z-scheme g-C3N4/WO3 composite. The enhancement can be attributed to accelerated charge separation in the heterointerface because of the suitably aligned band gap between WO3 and g-C3N4, as confirmed by optical spectroscopy and ultraviolet photoelectron spectroscopy (UPS) analysis. The photocatalytic process and mechanism of the g-C3N4-based heterojunctions are proposed herein, which potentially explain the origin of the enhanced photoelectrochemical performance. This achievement and the fundamental information supplied here indicate the importance of rationally designing heterojunction photoelectrodes to improve the performance of semiconductors. This is particularly important for materials such as pure g-C3N4 and WO3, as their photoactivities are strongly restricted by high recombination rates.

Graphical abstract: Assembly of g-C3N4-based type II and Z-scheme heterojunction anodes with improved charge separation for photoelectrojunction water oxidation

Supplementary files

Article information

Article type
Paper
Submitted
02 Dec 2016
Accepted
10 Jan 2017
First published
10 Jan 2017

Phys. Chem. Chem. Phys., 2017,19, 4507-4515

Assembly of g-C3N4-based type II and Z-scheme heterojunction anodes with improved charge separation for photoelectrojunction water oxidation

C. Wang, D. Qin, D. Shan, J. Gu, Y. Yan, J. Chen, Q. Wang, C. He, Y. Li, J. Quan and X. Lu, Phys. Chem. Chem. Phys., 2017, 19, 4507 DOI: 10.1039/C6CP08066A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements