Issue 8, 2017

Selective solute adsorption and partitioning around single PNIPAM chains

Abstract

Thermoresponsive polymer architectures have become integral building blocks of ‘smart’ functional materials in modern applications. For a large range of developments, e.g. for drug delivery or nanocatalytic carrier systems, the selective adsorption and partitioning of molecules (ligands or reactants) inside the polymeric matrix are key processes that have to be controlled and tuned for the desired material function. In order to gain insights into the nanoscale structure and binding details in such systems, we here employ molecular dynamics simulations of the popular poly(N-isopropylacrylamide) (PNIPAM) polymer in explicit water in the presence of various representative solute types with a focus on aromatic model reactants. We study a single polymer chain and explore the influence of its elongation, stereochemistry, and temperature on the solute binding affinities. While we find that the excess adsorption generally increases with the size of the solute, the temperature-dependent affinity to the chain is highly solute specific and has a considerable dependence on the polymer elongation (i.e. polymer swelling state). We elucidate the molecular mechanisms of the selective binding in detail and eventually present how the results can be extrapolated to macroscopic partitioning of the solutes in swollen polymer architectures, such as hydrogels.

Graphical abstract: Selective solute adsorption and partitioning around single PNIPAM chains

Supplementary files

Article information

Article type
Paper
Submitted
07 Dec 2016
Accepted
23 Jan 2017
First published
23 Jan 2017

Phys. Chem. Chem. Phys., 2017,19, 5906-5916

Selective solute adsorption and partitioning around single PNIPAM chains

M. Kanduč, R. Chudoba, K. Palczynski, W. K. Kim, R. Roa and J. Dzubiella, Phys. Chem. Chem. Phys., 2017, 19, 5906 DOI: 10.1039/C6CP08366H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements