Issue 11, 2016

Controllable one-pot synthesis of a nest-like Bi2WO6/BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation

Abstract

In this study, a novel visible-light-sensitive Bi2WO6/BiVO4 composite photocatalyst was controllably synthesized through a facile one-pot hydrothermal method. The Bi2WO6/BiVO4 composite exhibited a perfect nest-like hierarchical microsphere structure, which was constructed by the self-assembly of nanoplates with the assistance of polyvinylpyrrolidone (PVP). The growth mechanism of the Bi2WO6/BiVO4 composite and the effect of its structure on its photocatalytic performance was investigated and proposed. Experimental results showed that the Bi2WO6/BiVO4 composites displayed enhanced photocatalytic antifouling activities under visible light irradiation compared to pure Bi2WO6 and BiVO4. Bi2WO6/BiVO4-1 exhibited the best photocatalytic antifouling performance, and almost all (99.99%) Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria were killed within 30 min. Moreover, the Bi2WO6/BiVO4-1 composite exhibited excellent stability and reusability in the cycled experiments. The photocatalytic antifouling mechanism was proposed based on the active species trapping experiments, revealing that the photo-induced holes (h+) and hydroxyl radicals (˙OH) could attack the cell wall and cytoplasmic membrane directly and lead to the death of bacteria. The obviously enhanced photocatalytic activity of the Bi2WO6/BiVO4-1 composite could be mainly attributed to the formation of heterojunctions, accelerating the separation of photo-induced electrons and holes. Furthermore, the large BET surface area combined with the wide photoabsorption region further improved the photocatalytic performance of the Bi2WO6/BiVO4-1 composite. This study provides a new strategy to develop novel composite photocatalysts with enhanced photocatalytic performance for marine antifouling and water purification.

Graphical abstract: Controllable one-pot synthesis of a nest-like Bi2WO6/BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation

Supplementary files

Article information

Article type
Paper
Submitted
11 Jan 2016
Accepted
20 Jan 2016
First published
22 Jan 2016

Dalton Trans., 2016,45, 4588-4602

Controllable one-pot synthesis of a nest-like Bi2WO6/BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation

P. Ju, Y. Wang, Y. Sun and D. Zhang, Dalton Trans., 2016, 45, 4588 DOI: 10.1039/C6DT00118A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements