Issue 41, 2016

Rare-earth metal diisopropylamide-catalyzed intramolecular hydroamination

Abstract

Rare-earth metal diisopropylamide complexes LiLn(NiPr2)4(THF) (Ln = Sc, Y, La), [LiY(NiPr2)4]n, NaLn(NiPr2)4(THF) (Ln = Sc, Y), Sc(NiPr2)3(THF) and Ce(NiPr2)4 were screened as catalysts for the intramolecular hydroamination/cyclization (IHC) of 1-amino-2,2-dimethyl-4-pentene, 1-amino-2,2-diphenyl-4-pentene, and 1-amino-2,2-diphenyl-5-hexene at ambient and moderately increased temperature of 60 °C in C6D6. The lithium ate complexes displayed the most efficient precatalysts with high conversion rates at 60 °C for the phenyl-substituted substrates and Ln = Y and La, affording turnover frequencies Nt as high as 164 h−1. The catalytic activity could be increased by employing THF-free complex [LiY(NiPr2)4]n (Nt = 45.8 h−1 at 26 °C; 34.1 h−1 for LiY(NiPr2)4(THF)). In situ generation of putative LiY(NiPr2)4(THF) from YCl3(THF)3.3 and four equivalents of LiNiPr2 (LDA) in C6D6 generated a catalyst revealing Nt comparable to pre-isolated crystallized LiY(NiPr2)4(THF) but yielding even higher substrate conversion. The IHC reactions were also examined for rare-earth metal bis(trimethylsilyl)amide catalysts Ln[N(SiMe3)2]3 (Ln = Sc, Y, La) as well as for LDA using the same reaction conditions, revealing overall superior activity of the silylamide derivatives but poor performance of LDA compared to the rare-earth metal diisopropylamide complexes LiLn(NiPr2)4(THF). Cyclization of 1-amino-2,2-diphenyl-5-hexene to the 6-membered heterocycle 2-methyl-4,4-diphenylpiperidine by lanthanum derivative LiLa(NiPr2)4(THF) was accompanied by a competitive isomerization reaction affording max. 20% of 1-amino-2,2-diphenyl-4-hexene after 2 h at 60 °C. Crystalline tetravalent Ce(NiPr2)4 showed a better IHC performance than crystalline trivalent Sc(NiPr2)3(THF) as preliminary examined for 1-amino-2,2-diphenyl-4-pentene at 26 °C (Nt = 5.6 and 0.9 h−1, respectively), but cyclization came to a halt after 2 h, probably due to decomposition of the catalyst.

Graphical abstract: Rare-earth metal diisopropylamide-catalyzed intramolecular hydroamination

Supplementary files

Article information

Article type
Paper
Submitted
01 Aug 2016
Accepted
14 Sep 2016
First published
15 Sep 2016
This article is Open Access
Creative Commons BY-NC license

Dalton Trans., 2016,45, 16393-16403

Rare-earth metal diisopropylamide-catalyzed intramolecular hydroamination

T. Spallek and R. Anwander, Dalton Trans., 2016, 45, 16393 DOI: 10.1039/C6DT03045A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements