Issue 10, 2016

SnSe: a remarkable new thermoelectric material

Abstract

The deceptively simple material SnSe has surprised the scientific community by showing an unexpectedly low thermal conductivity and high power factor and it has become a very promising thermoelectric material. Both the electrical and thermal transport properties of SnSe are outstanding. It is remarkable that a binary compound exhibits strong anharmonic and anisotropic bonding, and after hole doping it shows an exceptionally high power factor because of a high electrical conductivity and a strongly enhanced Seebeck coefficient. The latter is enabled by the contribution of multiple electronic valence bands. In this perspective, we discuss the natural features of SnSe, including crystal structures, electronic band structures, and physical and chemical properties. We also compare the electrical transport properties of single crystals and polycrystalline SnSe. The thermal conductivities of polycrystalline samples show wide variation from laboratory to laboratory, with some values being higher than those of single crystals and some lower, which has caused confusion and controversy. To address the issues regarding the thermal transport properties of SnSe, we systematically summarize the reports for SnSe variants, discuss them along with some of our own new results, and offer possible explanations. Finally, some possible strategies are proposed toward future enhancements of the thermoelectric figure of merit of SnSe.

Graphical abstract: SnSe: a remarkable new thermoelectric material

Article information

Article type
Perspective
Submitted
17 Jun 2016
Accepted
05 Sep 2016
First published
05 Sep 2016

Energy Environ. Sci., 2016,9, 3044-3060

SnSe: a remarkable new thermoelectric material

L. Zhao, C. Chang, G. Tan and M. G. Kanatzidis, Energy Environ. Sci., 2016, 9, 3044 DOI: 10.1039/C6EE01755J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements