Issue 9, 2016

Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production

Abstract

Earth-abundant MoS2 is widely reported as a promising HER electrocatalyst in acidic solutions, but it exhibits extremely poor HER activities in alkaline media due to the slow water dissociation process. Here we present a combined theoretical and experimental approach to improve the sluggish HER kinetics of MoS2 electrocatalysts through engineering the water dissociation sites by doping Ni atoms into MoS2 nanosheets. The Ni sites thus introduced can effectively reduce the kinetic energy barrier of the initial water-dissociation step and facilitate the desorption of the OH that are formed. As a result, the developed Ni-doped MoS2 nanosheets (Ni-MoS2) show an extremely low HER overpotential of ∼98 mV at 10 mA cm−2 in 1 M KOH aqueous solution, which is superior to those (>220 mV at 10 mA cm−2) of reported MoS2 electrocatalysts.

Graphical abstract: Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production

Supplementary files

Article information

Article type
Communication
Submitted
21 Jun 2016
Accepted
19 Jul 2016
First published
19 Jul 2016
This article is Open Access
Creative Commons BY-NC license

Energy Environ. Sci., 2016,9, 2789-2793

Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production

J. Zhang, T. Wang, P. Liu, S. Liu, R. Dong, X. Zhuang, M. Chen and X. Feng, Energy Environ. Sci., 2016, 9, 2789 DOI: 10.1039/C6EE01786J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements