Issue 2, 2017

Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction

Abstract

Two-dimensional molybdenum sulfide is an attractive noble-metal-free electrocatalyst for the hydrogen evolution reaction (HER). Significant efforts have been made to increase the number of exposed edge sites. However, little attention has been paid to devising edge surface structures of MoS2 sheet stacks to promote the HER kinetics. Herein we report the first demonstration of significantly enhanced HER kinetics by controllably fabricating a stepped MoS2 surface structure. Vertical arrays of MoS2 sheets terminated with such a stepped surface structure have proved to be an outstanding HER electrocatalyst with an overpotential of 104 mV at 10 mA cm−2, an exchange current density of 0.2 mA cm−2 and high stability. Experimental and theoretical results indicate that the enhanced electrocatalytic activity of the vertical MoS2 arrays is associated with the unique vertically terminated, highly exposed, stepped surface structure with a nearly thermoneutral H-adsorption energy. This work opens a new avenue to designing and developing layered materials for electrochemical energy applications.

Graphical abstract: Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction

Supplementary files

Article information

Article type
Paper
Submitted
14 Dec 2016
Accepted
03 Jan 2017
First published
03 Jan 2017

Energy Environ. Sci., 2017,10, 593-603

Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction

J. Hu, B. Huang, C. Zhang, Z. Wang, Y. An, D. Zhou, H. Lin, M. K. H. Leung and S. Yang, Energy Environ. Sci., 2017, 10, 593 DOI: 10.1039/C6EE03629E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements