Issue 17, 2016

A route for direct transformation of aryl halides to benzyl alcohols via carbon dioxide fixation reaction catalyzed by a (Pd@N-GMC) palladium nanoparticle encapsulated nitrogen doped mesoporous carbon material

Abstract

A nitrogen doped mesoporous carbon material was synthesized from glucose and melamine under hydrothermal treatment. A soft template, Brij-35 was used as a template. A nitrogen containing high surface area and porous channels makes this material an important support for palladium nanoparticles as well as a carbon dioxide capturing agent. Ethylene glycol was used as a reducing agent for the palladium nanoparticle synthesis. The palladium nanoparticle embedded porous nitrogen doped carbon material (Pd@N-GMC) was used for the synthesis of benzyl alcohols from aryl iodides via carbon dioxide fixation reaction. The catalyst was highly stable and reusable without any significance loss of its activity.

Graphical abstract: A route for direct transformation of aryl halides to benzyl alcohols via carbon dioxide fixation reaction catalyzed by a (Pd@N-GMC) palladium nanoparticle encapsulated nitrogen doped mesoporous carbon material

Supplementary files

Article information

Article type
Paper
Submitted
13 Apr 2016
Accepted
09 May 2016
First published
11 May 2016

Green Chem., 2016,18, 4649-4656

A route for direct transformation of aryl halides to benzyl alcohols via carbon dioxide fixation reaction catalyzed by a (Pd@N-GMC) palladium nanoparticle encapsulated nitrogen doped mesoporous carbon material

R. A. Molla, Md. A. Iqubal, K. Ghosh and S. M. Islam, Green Chem., 2016, 18, 4649 DOI: 10.1039/C6GC01038E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements