Issue 16, 2016

Non-catalyzed one-step synthesis of ammonia from atmospheric air and water

Abstract

It is well known that ammonia is produced through a catalytic reaction at high temperature and pressure from pure nitrogen and hydrogen. This catalytic chemical process is a massive and high-energy-consuming process, but a very important one for nitrogen fixation. Here, we show a non-catalyzed one-step synthesis of ammonia from atmospheric air (nitrogen source) and water (hydrogen source), based on an interfacial reaction between the air plasma gas phase and the water phase, at 25 °C and atmospheric pressure. In the plasma/liquid interfacial reaction (P/L reaction), atomic nitrogen in both air plasma and nitrogen plasma first abstracts hydrogen from the water phase surface at the P/L interface, and then NH is produced without any catalyst. Transiently formed NH is reduced further at the water phase, affording NH3, which then dissolves in the water phase. The P/L reaction may provide an alternative solution that enables both energy conservation and CO2 emission reduction.

Graphical abstract: Non-catalyzed one-step synthesis of ammonia from atmospheric air and water

Article information

Article type
Communication
Submitted
08 Jun 2016
Accepted
07 Jul 2016
First published
07 Jul 2016
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2016,18, 4536-4541

Author version available

Non-catalyzed one-step synthesis of ammonia from atmospheric air and water

T. Haruyama, T. Namise, N. Shimoshimizu, S. Uemura, Y. Takatsuji, M. Hino, R. Yamasaki, T. Kamachi and M. Kohno, Green Chem., 2016, 18, 4536 DOI: 10.1039/C6GC01560C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements