Issue 12, 2016

2-D steering and propelling of acoustic bubble-powered microswimmers

Abstract

This paper describes bi-directional (linear and rotational) propelling and 2-D steering of acoustic bubble-powered microswimmers that are achieved in a centimeter-scale pool (beyond chip level scale). The core structure of a microswimmer is a microtube with one end open in which a gaseous bubble is trapped. The swimmer is propelled by microstreaming flows that are generated when the trapped bubble is oscillated by an external acoustic wave. The bubble oscillation and thus propelling force are highly dependent on the frequency of the acoustic wave and the bubble length. This dependence is experimentally studied by measuring the resonance behaviors of the testing pool and bubble using a laser Doppler vibrometer (LDV) and by evaluating the generated streaming flows. The key idea in the present 2-D steering is to utilize this dependence. Multiple bubbles with different lengths are mounted on a single microswimmer with a variety of arrangements. By controlling the frequency of the acoustic wave, only frequency-matched bubbles can strongly oscillate and generate strong propulsion. By arranging multiple bubbles of different lengths in parallel but with their openings opposite and switching the frequency of the acoustic wave, bi-directionally linear propelling motions are successfully achieved. The propelling forces are calculated by a CFD analysis using the Ansys Fluent® package. For bi-directional rotations, a similar method but with diagonal arrangement of bubbles on a rectangular swimmer is also applied. The rotation can be easily reversed when the frequency of the acoustic wave is switched. For 2-D steering, short bubbles are aligned perpendicular to long bubbles. It is successfully demonstrated that the microswimmer navigates through a T-junction channel under full control with and without carrying a payload. During the navigation, the frequency is the main control input to select and resonate targeted bubbles. All of these operations are achieved by a single piezoelectric actuator.

Graphical abstract: 2-D steering and propelling of acoustic bubble-powered microswimmers

Supplementary files

Article information

Article type
Paper
Submitted
31 Mar 2016
Accepted
12 May 2016
First published
13 May 2016

Lab Chip, 2016,16, 2317-2325

2-D steering and propelling of acoustic bubble-powered microswimmers

J. Feng, J. Yuan and S. K. Cho, Lab Chip, 2016, 16, 2317 DOI: 10.1039/C6LC00431H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements