Issue 19, 2016

A lab-on-a-disc with reversible and thermally stable diaphragm valves

Abstract

A lab-on-a-disc is a unique microfluidic platform that utilizes centrifugal force to pump liquids. This offers many benefits for point-of-care devices because it eliminates the need for connections to multiple pumps and complex tubing connections. A wide range of applications including clinical chemistry, immunoassay, cell analysis, and nucleic acid tests could be demonstrated on a spinning disc. To enable the performance of assays in a fully integrated and automated manner, the robust actuation of integrated valves is a prerequisite. However, conventional passive-type valves incur a critical drawback in that their operation is dependent on the rotational frequency, which is easily influenced by the channel geometry and chemistry, in addition to the physical properties of the liquids to be transferred. Even though a few active-type valving techniques permit the individual actuation of valves, independent of the rotational frequency, complex procedures for the fabrication as well as actuation mechanisms have prevented their broader acceptance in general applications. Here, we report on a lab-on-a-disc incorporating individually addressable diaphragm valves (ID valves) that enable the reversible and thermally stable actuation of multiple valves with unprecedented ease and robustness. These ID valves are configured from an elastic epoxy diaphragm embedded on a 3D printed push-and-twist valve, which can be easily actuated by a simple automatic driver unit. As a proof of concept experiment, an enzyme-linked immunosorbent assay (ELISA) and a polymerase chain reaction (PCR) were performed on a disc in a fully automated manner to demonstrate the robust, reversible, leak-free, and thermally stable actuation of the valves.

Graphical abstract: A lab-on-a-disc with reversible and thermally stable diaphragm valves

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2016
Accepted
09 Aug 2016
First published
09 Aug 2016

Lab Chip, 2016,16, 3741-3749

A lab-on-a-disc with reversible and thermally stable diaphragm valves

T. Kim, V. Sunkara, J. Park, C. Kim, H. Woo and Y. Cho, Lab Chip, 2016, 16, 3741 DOI: 10.1039/C6LC00629A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements