Issue 5, 2016

High thermal conductivity in polaritonic SiO2 nanoparticle beds

Abstract

Recent theoretical works predict the ability of surface phonon polaritons to increase thermal conduction along nanoparticle chains, but measurement of this effect has proven elusive. Here we demonstrate a new approach to observe thermal conduction by surface phonon polaritons – packed beds of SiO2 nanoparticles. When we modify the interstitial material with adsorbed water or a coating of ethylene glycol, we experimentally resolve thermal conductivities as high as 1.5 and 18 times the phonon value, respectively. Although existing models do not fully explain our results, we develop a new scaling relation that suggests thermal conduction is primarily dependent on the 3D density of states. An examination of classical heat transport mechanisms shows that these are unlikely sources for the observed thermal conductivities, suggesting that surface phonon polaritons play an observable role in SiO2 nanoparticle bed heat transfer properties.

Graphical abstract: High thermal conductivity in polaritonic SiO2 nanoparticle beds

Supplementary files

Article information

Article type
Communication
Submitted
01 Apr 2016
Accepted
12 May 2016
First published
13 May 2016

Mater. Horiz., 2016,3, 434-441

High thermal conductivity in polaritonic SiO2 nanoparticle beds

E. J. Tervo, O. S. Adewuyi, J. S. Hammonds and B. A. Cola, Mater. Horiz., 2016, 3, 434 DOI: 10.1039/C6MH00098C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements