Issue 3, 2017

Simultaneous selective extraction of nitramine explosives using molecularly imprinted polymer hollow spheres from post blast samples

Abstract

Molecularly imprinted polymer hollow spheres (MIHSs) were produced by using hexanitrohexaazaisowurtzitane (HNIW or CL-20) as a template, silica nanospheres as a sacrificial matrix, acrylamide as a functional monomer, ethylene glycol dimethacrylate as a cross-linker and acetonitrile as a porogen at 4 °C under UV irradiation. This sorbent was applied to the selective solid-phase extraction (SPE) of several explosives simultaneously by using a newly-developed SPE procedure. For the first time, 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) and CL-20 were selectively extracted and determined simultaneously from simulated post-blast samples prepared from motor oil and vacuum pump oil. The matrix effects were successfully eliminated and accurate quantization was achieved. When the loading amounts of HMX, RDX, TNT and CL-20 were, respectively, below 10, 2, 5 and 20 nmol for 100 mg of MIHS, these explosives were almost retrieved completely (above 98%). For the MIHSs and non-imprinted polymer hollow spheres (NIHSs), in acetonitrile and methanol, the imprinting factors (IFs) of CL-20 and tetraacetyldibenzylhexaazaisowurtzitane (TADB, a structural analogue of CL-20) changed dramatically, from 7.75 to 1.57 and 0.88 to 2.39, respectively. It highlighted the significant effect of solvents on imprinted sites.

Graphical abstract: Simultaneous selective extraction of nitramine explosives using molecularly imprinted polymer hollow spheres from post blast samples

Article information

Article type
Paper
Submitted
15 Sep 2016
Accepted
09 Dec 2016
First published
09 Dec 2016

New J. Chem., 2017,41, 1129-1136

Simultaneous selective extraction of nitramine explosives using molecularly imprinted polymer hollow spheres from post blast samples

J. Wang, Z. Meng, M. Xue, L. Qiu, X. Dong, Z. Xu, X. He, X. Liu and J. Li, New J. Chem., 2017, 41, 1129 DOI: 10.1039/C6NJ02910H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements