Issue 28, 2016

Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn2+ detection

Abstract

Fluorescent polydopamine (FPD) is an interesting material with excellent biocompatibility. However, its preparation is currently a lengthy and potentially dangerous process. We herein employ magnetic iron oxide (Fe3O4) nanoparticles as a peroxidase-mimicking nanozyme to produce FPD under mild conditions. Different from previous protocols using multiple steps with up to 6% (∼2 M) H2O2, this preparation takes place in a single step with just 5 mM H2O2 at room temperature. The oxidized product shows excitation-wavelength-dependent emission peaks, similar to previous reports. The reaction kinetics, pH, temperature, and ionic strength are individually optimized. Among a diverse range of other nanomaterials tested, including Fe2O3, CeO2, CoO, Co3O4, NiO, TiO2, gold nanoparticles, and graphene oxide, Fe2O3 and graphene oxide yielded relatively weak emission, while the rest of the materials failed to produce FPD. The Fe3O4 nanoparticles retained ∼90% catalytic activity even after ten cycles of synthesis. Finally, Zn2+ can enhance the fluorescence of FPD under 360 nm excitation but not under 480 nm excitation, leading to a sensitive light-up sensor with a detection limit of 60 nM Zn2+. Therefore, this work has demonstrated not only a novel use of nanozymes, but also an interesting application of FPD.

Graphical abstract: Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn2+ detection

Supplementary files

Article information

Article type
Paper
Submitted
29 Mar 2016
Accepted
17 Jun 2016
First published
20 Jun 2016

Nanoscale, 2016,8, 13620-13626

Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn2+ detection

B. Liu, X. Han and J. Liu, Nanoscale, 2016, 8, 13620 DOI: 10.1039/C6NR02584F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements