Issue 39, 2016

The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition

Abstract

We have studied the influence of different carbon precursors (methane, ethanol and toluene) on the type, diameter and chiral angle distributions of carbon nanotubes (CNTs) grown with the floating catalyst technique in a horizontal gas-flow reactor. Using electron diffraction to study their atomic structures, we found that ethanol and toluene precursors gave high single-wall CNT yields (92% and 89% respectively), with narrow diameter distributions: 1.1 nm to 1.7 nm (ethanol); 1.3 nm to 2.1 nm (toluene), with a propensity for armchair-type chiral angles. In contrast, methane-grown CNTs gave high double-wall CNT yields (75%) with broader diameter populations: 1.2 to 4.6 nm (inner CNT) and 2.2 to 5.3 nm (outer CNT) with a more uniform spread of chiral angles, but weakly peaked around 15 to 20 degrees. These observations agree with known growth models. However, double-wall CNTs grown with toluene showed an unusually narrow interlayer spacing of 0.286 ± 0.003 nm with suggestions of large, 20° to 25°, differences between inner and outer CNT chiral angles. Methane gave a large interlayer spacing (0.385 ± 0.002 nm) with suggestions of small 5° to 10° inter-tube chirality correlations.

Graphical abstract: The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2016
Accepted
16 Sep 2016
First published
16 Sep 2016

Nanoscale, 2016,8, 17262-17270

Author version available

The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition

J. S. Barnard, C. Paukner and K. K. Koziol, Nanoscale, 2016, 8, 17262 DOI: 10.1039/C6NR03895F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements