Issue 2, 2017

Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients

Abstract

Ion transport through nanopores is an important process in nature and has important engineering applications. To date, most studies of nanopore ion transport have been carried out with electrolytes of relatively low concentrations. In this paper, we report on ionic current modulation from the translocation of dsDNA through a nanopore under high ionic strength and with an electrolyte concentration gradient across the nanopore. Results show that in this case, DNA translocation can induce either negative or positive ionic current modulation, even though usually only downward peaks are expected under this high ion concentration. Through a series of experiments and numerical simulations with nanopores of different diameters and concentration gradients, it is found that the positive pulse is due to extra ions outside the electric double layer of the DNA that are brought into the nanopore by the enhanced electroosmotic flow (EOF) with the negatively charged DNA inside the nanopore.

Graphical abstract: Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients

Supplementary files

Article information

Article type
Paper
Submitted
17 Oct 2016
Accepted
05 Dec 2016
First published
06 Dec 2016

Nanoscale, 2017,9, 930-939

Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients

Y. Zhang, G. Wu, W. Si, J. Ma, Z. Yuan, X. Xie, L. Liu, J. Sha, D. Li and Y. Chen, Nanoscale, 2017, 9, 930 DOI: 10.1039/C6NR08123A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements