Issue 24, 2016

Towards theory driven structure elucidation of complex natural products: mandelalides and coibamide A

Abstract

The effectiveness of computational tools in determining relative configurations of complex molecules is investigated, using natural products mandelalides A–D and coibamide A, towards a generalized recipe for the scientific community at large. Ultimately, continuing efforts in this vein will accelerate and strengthen relative structure elucidation of complex molecules, such as natural products. Molecular mechanics conformational search, quantum mechanical NMR chemical shift predictions, and DP4 analyses led to confirmation of the revised structures of mandelalides A–D and coibamide A. All chiral centers in the northern hemisphere of mandelalides A–D are inverted with respect to the originally proposed structures, in agreement with recent total syntheses of mandelalide A by Ye, Fürstner & Carter. In the case of coibamide A, it was found that Fang & Su's revision, in which both the macrocycle [MeAla11] and the side chain [HIV2] residues are inverted from L to D, was consistent with the authentic natural product and computations.

Graphical abstract: Towards theory driven structure elucidation of complex natural products: mandelalides and coibamide A

  • This article is part of the themed collection: New Talent

Supplementary files

Article information

Article type
Paper
Submitted
04 Apr 2016
Accepted
22 Apr 2016
First published
06 May 2016

Org. Biomol. Chem., 2016,14, 5826-5831

Towards theory driven structure elucidation of complex natural products: mandelalides and coibamide A

K. M. Snyder, J. Sikorska, T. Ye, L. Fang, W. Su, R. G. Carter, K. L. McPhail and P. H.-Y. Cheong, Org. Biomol. Chem., 2016, 14, 5826 DOI: 10.1039/C6OB00707D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements