Issue 56, 2016

Controlling nanoflake motion using stiffness gradients on hexagonal boron nitride

Abstract

Durotaxis has been emerging as a novel technique for manipulating directional motion of nanoscale particles. Two-dimensional materials with low surface friction, such as hexagonal boron nitride (hBN), are well-suited to serve as a platform for solid–solid transportations or manipulations. Here we employ molecular dynamics simulations to explore the feasibility of utilizing a stiffness gradient on a large hBN substrate to control the motion of a small hBN or graphene nanoflake on it. Our attempts to systematically investigate the mechanism of durotaxis-induced transportation are centered on the fundamental driving mechanism of the motion and the quantitative effect of significant parameters such as stiffness gradient, substrate temperature, and material of the nanoflake on its motion. Simulation results have demonstrated that, while the stiffness gradient plays a pivotal role in the evolution of the motion of the nanoflake on the substrate surface, the temperature of the substrate greatly influences the behavior of the nanoflake as well. There is no significant difference in directional motion between hBN and graphene nanoflakes on the hBN substrate. An interesting relation between the effective driving force and the stiffness gradient has been quantitatively captured by employing steered molecular dynamics. These findings will provide fundamental insights into the motion of nanodevices on a solid surface due to durotaxis, and will offer a novel view for manipulating directional motion of nanoscale particles on a solid surface.

Graphical abstract: Controlling nanoflake motion using stiffness gradients on hexagonal boron nitride

Article information

Article type
Paper
Submitted
20 Feb 2016
Accepted
19 May 2016
First published
20 May 2016

RSC Adv., 2016,6, 51205-51210

Controlling nanoflake motion using stiffness gradients on hexagonal boron nitride

M. Becton and X. Wang, RSC Adv., 2016, 6, 51205 DOI: 10.1039/C6RA04535A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements