Issue 63, 2016

Synthesis, two-photon absorption and aggregation-induced emission properties of multi-branched triphenylamine derivatives based on diketopyrrolopyrrole for bioimaging

Abstract

In this work, three new diketopyrrolopyrrole (DPP)-based multi-branched derivatives (YJ-1, YJ-2 and YJ-3) with triphenylamine, 2,4,6-tri([1,1′-biphenyl]-4-yl)-1,3,5-triazine and 2,2′,2′′-(nitrilotr-is([1,1′-biphenyl]-4′,4-diyl))tris(3-phenylacrylonitrile) cores have been designed and synthesized. Their one- and two-photon absorption properties have been investigated. The two-photon absorption cross sections (σ) measured by the open aperture Z-scan technique are determined to be 2912, 2016 and 2800 GM for YJ-(1–3), respectively. This result indicates that donor–acceptor–donor (D–A–D)-type molecules are benefit to improve σ and their σ data increase with the better intramolecular charge transfer (ICT). Also, all of the three DPP derivatives exhibit good aggregation-induced emission (AIE) properties which are very weakly fluorescent in DMF, but a strong red fluorescent emission in solid state and in the aggregate state. More importantly, diketopyrrolopyrrole with tri-phenylamine (YJ-1) was applied for cell imaging and two-photon excited fluorescence in vivo imaging of mouse ear.

Graphical abstract: Synthesis, two-photon absorption and aggregation-induced emission properties of multi-branched triphenylamine derivatives based on diketopyrrolopyrrole for bioimaging

Supplementary files

Article information

Article type
Paper
Submitted
01 May 2016
Accepted
09 Jun 2016
First published
10 Jun 2016

RSC Adv., 2016,6, 58434-58442

Synthesis, two-photon absorption and aggregation-induced emission properties of multi-branched triphenylamine derivatives based on diketopyrrolopyrrole for bioimaging

J. Yang, H. Tan, D. Li, T. Jiang, Y. Gao, B. Li, X. Qu and J. Hua, RSC Adv., 2016, 6, 58434 DOI: 10.1039/C6RA11269B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements