Issue 92, 2016

The toxicity of graphene quantum dots

Abstract

Recently, there has been a rapidly expanding interest in a new nano material, graphene quantum dots, owing to its profound potential in various advanced applications. Despite its exciting application outlook, the toxicology of the material has to be well addressed before its practical use in the highly prospective areas – especially for bio-applications such as bio-sensing, bio-imaging and nanomedicine (e.g. drug delivery). This review provides a comprehensive account of the current research status regarding the toxicity of graphene quantum dots (GQDs), including raw GQDs, chemically doped GQDs and chemically functionalized GQDs. It summarises the existing tests on both in vivo and in vitro toxicity. Important topics including the uptake mechanism by cells and parameters governing the toxicity of GQDs (such as concentration, methods of synthesis, particle size, surface chemistry and chemical doping) are discussed. It also covers demonstrations on toxicity regulation of GQDs via chemical modification, as a toxicity mechanism via generation of reactive oxygen species (ROS) by some GQDs is also evident. Based on the evaluation of the current research status, possible future perspectives are also suggested.

Graphical abstract: The toxicity of graphene quantum dots

Article information

Article type
Review Article
Submitted
27 Jun 2016
Accepted
08 Sep 2016
First published
08 Sep 2016

RSC Adv., 2016,6, 89867-89878

The toxicity of graphene quantum dots

S. Wang, I. S. Cole and Q. Li, RSC Adv., 2016, 6, 89867 DOI: 10.1039/C6RA16516H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements