Issue 92, 2016, Issue in Progress

Zinc-based deep eutectic solvent-mediated hydroxylation and demethoxylation of lignin for the production of wood adhesive

Abstract

Choline chloride–ZnCl2 deep-eutectic solvent (ChCl–ZnCl2 DES), mole ratio 1 : 2, was used to improve the chemical reactivity of wheat straw alkali lignin under different temperatures and times of pretreatment. The chemical structure of the resulting modified lignin was studied by UV, FT-IR, 1H, 13C and 31P-NMR spectroscopies, TGA, NALDI-TOF MS and ICP. Interestingly up to 10 wt% of lignin can be readily dissolved in ChCl–ZnCl2 DES under the optimized pretreatment conditions (80 °C, 1 h) yielding ca. 65% of modified lignin upon precipitation using water as an antisolvent. As a result of the chemical modification of lignin occurring during its dissolution in DES, the total phenolic hydroxyl of the fraction precipitated increased ca. 1.9-fold while methoxyl moieties were reduced between 1.6 and 2.2-fold when compared with untreated lignin. Thus, in the fraction of lignin precipitated, phenolic hydroxyl formation took place at the expense of selective methoxyl cleavage from the aromatic ring, judging by the decrease of S units, whereas β-O-4′ linkages and molecular weight remain unchanged. Finally modified lignin was used as a phenol replacement in the synthesis of phenol-formaldehyde (PF) adhesives. Remarkably, the strength of the modified resin (1.3 MPa) compared with PF resin was practically the same when 40 wt% of the phenol was replaced by the modified lignin. This work shows that lignin can be readily modified in a DES – improving its reactivity – further advancing its prospective use in the wood industry.

Graphical abstract: Zinc-based deep eutectic solvent-mediated hydroxylation and demethoxylation of lignin for the production of wood adhesive

Supplementary files

Article information

Article type
Paper
Submitted
18 Jul 2016
Accepted
13 Sep 2016
First published
14 Sep 2016

RSC Adv., 2016,6, 89599-89608

Zinc-based deep eutectic solvent-mediated hydroxylation and demethoxylation of lignin for the production of wood adhesive

S. Hong, H. Lian, X. Sun, D. Pan, A. Carranza, J. A. Pojman and J. D. Mota-Morales, RSC Adv., 2016, 6, 89599 DOI: 10.1039/C6RA18290A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements