Issue 112, 2016, Issue in Progress

A novel strategy for low level laser-induced plasmonic photothermal therapy: the efficient bactericidal effect of biocompatible AuNPs@(PNIPAAM-co-PDMAEMA, PLGA and chitosan)

Abstract

Nowadays the control of multidrug resistant (MDR) and pandrug resistant (PDR) bacteria has been the subject of extensive research. In this study an effective strategy was developed to destroy bacteria using low-level laser photothermal therapy combined with biocompatible surface-modified AuNPs. First, chitosan, poly(N-isopropylacrylamide)-co-(2-dimethylamino ethyl methacrylate) P(NIPAAM-co-DMAEMA) and poly(lactic-co-glycolic acid) (PLGA) modified AuNPs were synthesized and fully characterized. Afterwards, P. aeruginosa and A. baumannii (Two Gram-negative strains of bacteria) were exposed to different doses of low level NIR laser (810 nm) radiation in the presence or absence of the as-prepared surface-modified AuNPs (in a 1 : 1 ratio) and the killing efficiency of the radiated laser doses was calculated based on pour-plate colony count for each condition. Chitosan, P(NIPAAM-co-DMAEMA) and PLGA modified AuNPs were synthesized with a core/shell size of 108, 10 and 120 nm, respectively which was confirmed with DLS and TEM studies. Successful polymerization and surface coating of AuNPs was confirmed by FT-IR and 1H NMR. A decreasing trend in the viability of both bacteria was observed along with an increase of the laser dose for all three types of polymer-coated AuNPs. PLGA@AuNPs exhibited the most effective NIR-induced photothermal killing on both bacteria. In other words, 10 J cm−2 and 30 J cm−2 doses were enough to destroy almost all P. aeruginosa, and A. baumannii, respectively. Our study suggests the usefulness of low-level laser in plasmonic photothermal treatment. The suggested strategy, as a new method of anti-bacterial intervention, can be used for the eradication of infections such as wound infections in order to accelerate the healing process. In addition, the offered strategy can be suggested in the treatment of other bio-threats such as cancerous diseases in vivo.

Graphical abstract: A novel strategy for low level laser-induced plasmonic photothermal therapy: the efficient bactericidal effect of biocompatible AuNPs@(PNIPAAM-co-PDMAEMA, PLGA and chitosan)

Supplementary files

Article information

Article type
Paper
Submitted
17 Sep 2016
Accepted
15 Nov 2016
First published
15 Nov 2016

RSC Adv., 2016,6, 110499-110510

A novel strategy for low level laser-induced plasmonic photothermal therapy: the efficient bactericidal effect of biocompatible AuNPs@(PNIPAAM-co-PDMAEMA, PLGA and chitosan)

A. Gharatape, M. Milani, S. H. Rasta, M. Pourhassan-Moghaddam, S. Ahmadi-Kandjani, S. Davaran and R. Salehi, RSC Adv., 2016, 6, 110499 DOI: 10.1039/C6RA23213B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements