Issue 21, 2016

A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte

Abstract

Although flexible all-solid-state supercapacitors (f-SSCs) have been receiving much attention as promising flexible energy storage devices, most of them cannot operate at high temperatures due to the volatility or flammability of currently used aqueous and organic electrolytes. Here, we report an ionic liquid (IL) gel-based asymmetric supercapacitor having excellent heat-resistant performance and flexibility. To this end, low-cost γ-FeOOH is firstly electrodeposited on carbon cloth, and its pseudocapacitive behavior in a typical IL is investigated through an electrochemical quartz crystal microbalance (EQCM) for the first time. The results show that the pseudocapacitance mainly originates from a diffusion-controlled insertion process of the cations. By taking advantage of the prominent pseudocapacitance of γ-FeOOH, as well as excellent characteristics of IL gel electrolytes (thermostability, non-flammability, chemical inertness and wide potential), an advanced high-temperature f-SSC is fabricated by using γ-FeOOH as the anode and porous N-doped activated carbon as the cathode. The f-SSC exhibits outstanding electrochemical performance at elevated temperatures, and can achieve a maximum volumetric energy density of 1.44 mW h cm−3 (based on the whole device volume) at 200 °C. Moreover, it is able to maintain a stable energy-storage ability during the bending process even at 180 °C, providing the highest reported temperature for flexibility tests in f-SSCs to date.

Graphical abstract: A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte

Supplementary files

Article information

Article type
Paper
Submitted
26 Feb 2016
Accepted
21 Apr 2016
First published
25 Apr 2016

J. Mater. Chem. A, 2016,4, 8316-8327

A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte

B. Shen, R. Guo, J. Lang, L. Liu, L. Liu and X. Yan, J. Mater. Chem. A, 2016, 4, 8316 DOI: 10.1039/C6TA01734G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements