Issue 29, 2016

Interconnected hierarchical HUSY zeolite-loaded Ni nano-particles probed for hydrodeoxygenation of fatty acids, fatty esters, and palm oil

Abstract

Hierarchical H-style ultra-stable Y (HUSY) zeolites with abundant interconnected mesopores have been prepared using a sequential post-synthesis strategy that includes steaming dealumination and mixed-alkali desilication. The steaming treatment generates a broad size range of intra-mesopores (around 25 and 45 nm) and a moderate Si/Al ratio of 13.4 in the HUSY, which provides optimal material precursors for the ensuing subsequent alkaline desilication. N2 adsorption–desorption isotherms and X-ray diffractometry results indicate that the sample treated with pyridine/sodium hydroxide (HUSY-4) has a larger external surface area and a higher relative crystallinity. Infrared spectra of adsorbed pyridine show that HUSY-4 contains substantial Brønsted acid sites. The 27Al and 29Si nuclear magnetic resonance spectra show that HUSY-4 possesses few extra-framework alumina species. Infrared spectra in a vacuum show that the peak intensities of HUSY-4 in the bridged hydroxyl group (at 3560 and 3631 cm−1) are much stronger than those of the sample treated with tetrapropylammonium hydroxide (HUSY-3), indicating that the framework integrity of HUSY-4 is better. Differences in treatments with tetrapropylammonium hydroxide/sodium hydroxide and pyridine/sodium hydroxide treatments are attributed to the fact that the pyridine molecule (0.54 nm) can pass through the supercages (0.74 nm) to protect the zeolite framework from deep desilication, whereas the tetrapropylammonium hydroxide molecule (0.85 nm) is adsorbed only on the external surface. Eventually, a HUSY zeolite with a high external surface area, inter-connectedness and hierarchical mesopores (10, 25, and 45 nm) is prepared by initial high-temperature steaming, which is followed by desilication using a mixed alkali solution containing pyridine and sodium hydroxide. High-dispersion (5.5%), high-content (35 wt%), small Ni nanoparticles (4.9 ± 1.2 nm) are loaded onto and into the external surface areas and interpores of the hierarchical HUSY by the deposition–precipitation method. The resultant Ni/HUSY-4 shows an ultra-high efficiency in the hydrodeoxygenation of fatty acids, esters, and palm oil, and achieves high initial rates (60 g g−1 h−1) and a high C18 alkane selectivity (96%), which may be attributed to the enhanced Brønsted acid and adjacent Lewis acid (confirmed by the 1H DQ MAS NMR spectrum) together with the substantial dispersive Ni nanoparticles loaded onto/into the interconnected pores of the hierarchical HUSY support.

Graphical abstract: Interconnected hierarchical HUSY zeolite-loaded Ni nano-particles probed for hydrodeoxygenation of fatty acids, fatty esters, and palm oil

Supplementary files

Article information

Article type
Paper
Submitted
01 Mar 2016
Accepted
17 Jun 2016
First published
17 Jun 2016

J. Mater. Chem. A, 2016,4, 11330-11341

Interconnected hierarchical HUSY zeolite-loaded Ni nano-particles probed for hydrodeoxygenation of fatty acids, fatty esters, and palm oil

B. Ma, X. Yi, L. Chen, A. Zheng and C. Zhao, J. Mater. Chem. A, 2016, 4, 11330 DOI: 10.1039/C6TA01807F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements