Issue 25, 2016

Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt–zinc oxide catalysts for efficient oxidation of water

Abstract

The fabrication and design of earth-abundant and high-performance catalysts for the oxygen evolution reaction (OER) are very crucial for the development and commercialization of sustainable energy conversion technologies. Although spinel catalysts have been widely explored for the electrochemical oxygen evolution reaction (OER), the role of two geometrical sites that influence their activities has not been well established so far. Here, we present more effective cobalt–zinc oxide catalysts for the OER than ‘classical’ Co3O4. Interestingly, the significantly higher catalytic activity of ZnCo2O4 than that of Co3O4 is somewhat surprising since both crystallize in the spinel-type structure. The reasons for the latter remarkable difference of ZnCo2O4 and Co3O4 could be deduced from structure–activity relationships of the bulk and near-surface of the catalysts using comprehensive electrochemical, microscopic and spectroscopic techniques with a special emphasis on the different roles of the coordination environment of metal ions (octahedral vs. tetrahedral sites) in the spinel lattice. The vital factors influencing the catalytic activity of ZnCo2O4 over Co3O4 could be directly attributed to the higher amount of accessible octahedral Co3+ sites induced by the preferential loss of zinc ions from the surface of the ZnCo2O4 catalyst. The enhanced catalytic activity is accompanied by a larger density of metal vacancies, defective sites and hydroxylation. The results obtained here clearly demonstrate how a surface structural modification and generation of defects of catalysts can enhance their OER performance.

Graphical abstract: Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt–zinc oxide catalysts for efficient oxidation of water

Supplementary files

Article information

Article type
Paper
Submitted
01 May 2016
Accepted
02 Jun 2016
First published
06 Jun 2016

J. Mater. Chem. A, 2016,4, 10014-10022

Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt–zinc oxide catalysts for efficient oxidation of water

P. W. Menezes, A. Indra, A. Bergmann, P. Chernev, C. Walter, H. Dau, P. Strasser and M. Driess, J. Mater. Chem. A, 2016, 4, 10014 DOI: 10.1039/C6TA03644A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements