Issue 39, 2016

Theoretical study of a tunable and strain-controlled nanoporous graphenylene membrane for multifunctional gas separation

Abstract

Using van der Waals corrected density functional theory (DFT), we theoretically predict the performance of a strain-controlled graphenylene membrane in multifunctional gas separation. By applying lateral strain to this membrane, we find that the transition points between “closed” and “open” states for CO2, N2, CO, and CH4 passing through graphenylene membrane occur under 3.04%, 4.20%, 5.12%, and 10.78% strain, respectively. The H2 permeance is remarkably enhanced through tensile strain, and it reaches 2.6 × 10−2 mol s−1 m−2 Pa−1 under 3.04% strain, which is about 6 times higher than that with unstrained graphenylene membrane. At strain levels between 3.04% and 4.20%, this membrane can be used to separate CO2/N2. In particular, at strain levels of 4.20%, the permeance of CO2 for this strained membrane can reach 1.03 × 10−7 mol s−1 m−2 Pa−1 as well as 15.4 selectivity for CO2/N2, which are both higher than the industrially acceptable values of the permeance and selectivity. In addition, with a strain magnitude from 5.12% to 10.78%, a graphenylene monolayer can be used as a CH4 upgrading membrane. Our results demonstrate the promise of a tunable, multifunctional graphenylene gas-separation membrane, wherein the sizes of the nanopores can be precisely regulated by tensile strain. These findings may be useful for designing tunable nanodevices for gas separation and other applications.

Graphical abstract: Theoretical study of a tunable and strain-controlled nanoporous graphenylene membrane for multifunctional gas separation

Supplementary files

Article information

Article type
Paper
Submitted
29 May 2016
Accepted
02 Sep 2016
First published
20 Sep 2016

J. Mater. Chem. A, 2016,4, 15015-15021

Theoretical study of a tunable and strain-controlled nanoporous graphenylene membrane for multifunctional gas separation

L. Zhu, Y. Jin, Q. Xue, X. Li, H. Zheng, T. Wu and C. Ling, J. Mater. Chem. A, 2016, 4, 15015 DOI: 10.1039/C6TA04456E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements