Issue 35, 2016

A photoluminescent covalent triazine framework: CO2 adsorption, light-driven hydrogen evolution and sensing of nitroaromatics

Abstract

A highly photoluminescent (PL) porous covalent triazine-based framework (PCTF-8) is synthesized from tetra(4-cyanophenyl)ethylene by using trifluoromethanesulfonic acid as the catalyst at room temperature. Due to triazine units in the framework, the PCTF-8 exhibits excellent thermal stability (>400 °C). The Brunauer–Emmett–Teller (BET) specific surface area of PCTF-8 is 625 m2 g−1 which is lower than the one obtained from the synthesis under Lewis acid conditions (ZnCl2). At 1 bar and 273 K, the PCTF-8 adsorbs a significant amount of CO2 (56 cm3 g−1) and CH4 (17 cm3 g−1) which is highly comparable to nanoporous 1,3,5-triazine frameworks (NOP-1-6, 29–56 cm3 g−1). This nitrogen rich framework exhibits good ideal selectivity (61 : 1 (85% N2 : 15% CO2) at 273 K, 1 bar). Thus, it can be used as a promising candidate for potential applications in post-combustion CO2 capture and sequestration technologies. In addition, photoluminescence properties as well as the sensing behaviour towards nitroaromatics have been demonstrated. The fluorescence emission intensity of PCTF-8 is quenched by ca. 71% in the presence of 2,4,6-trinitrophenol (TNP). From time-resolved studies, a static quenching behaviour was found. This high photoluminescence property is used for hydrogen evolving organic photocatalysis from water in the presence of a sacrificial electron donor and a cocatalyst.

Graphical abstract: A photoluminescent covalent triazine framework: CO2 adsorption, light-driven hydrogen evolution and sensing of nitroaromatics

Supplementary files

Article information

Article type
Paper
Submitted
02 Jun 2016
Accepted
02 Aug 2016
First published
02 Aug 2016
This article is Open Access
Creative Commons BY license

J. Mater. Chem. A, 2016,4, 13450-13457

A photoluminescent covalent triazine framework: CO2 adsorption, light-driven hydrogen evolution and sensing of nitroaromatics

A. Bhunia, D. Esquivel, S. Dey, R. Fernández-Terán, Y. Goto, S. Inagaki, P. Van Der Voort and C. Janiak, J. Mater. Chem. A, 2016, 4, 13450 DOI: 10.1039/C6TA04623A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements