Issue 36, 2016

Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3

Abstract

Many metal halides that contain cations with the ns2 electronic configuration have recently been discovered as high-performance optoelectronic materials. In particular, solar cells based on lead halide perovskites have shown great promise as evidenced by the rapid increase of the power conversion efficiency. In this paper, we show density functional theory calculations of electronic structure and dielectric and defect properties of CsGeI3 (a lead-free halide perovskite material). The potential of CsGeI3 as a solar cell material is assessed based on its intrinsic properties. We find anomalously large Born effective charges and a large static dielectric constant dominated by lattice polarization, which should reduce carrier scattering, trapping, and recombination by screening charged defects and impurities. Defect calculations show that CsGeI3 is a p-type semiconductor and its hole density can be modified by varying the chemical potentials of the constituent elements. Despite the reduction of long-range Coulomb attraction by strong screening, the iodine vacancy in CsGeI3 is found to be a deep electron trap due to the short-range potential, i.e., strong Ge–Ge covalent bonding, which should limit electron transport efficiency in p-type CsGeI3. This is in contrast to the shallow iodine vacancies found in several Pb and Sn halide perovskites (e.g., CH3NH3PbI3, CH3NH3SnI3, and CsSnI3). The low-hole-density CsGeI3 may be a useful solar absorber material but the presence of the low-energy deep iodine vacancy may significantly reduce the open circuit voltage of the solar cell. On the other hand, CsGeI3 may be used as an efficient hole transport material in solar cells due to its small hole effective mass, the absence of low-energy deep hole traps, and the favorable band offset with solar absorber materials such as dye molecules and CH3NH3PbI3.

Graphical abstract: Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3

Supplementary files

Article information

Article type
Paper
Submitted
05 Jun 2016
Accepted
01 Aug 2016
First published
16 Aug 2016

J. Mater. Chem. A, 2016,4, 13852-13858

Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3

W. Ming, H. Shi and M. Du, J. Mater. Chem. A, 2016, 4, 13852 DOI: 10.1039/C6TA04685A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements