Issue 40, 2016

First-principles and experimental study of nitrogen/sulfur co-doped carbon nanosheets as anodes for rechargeable sodium ion batteries

Abstract

Heteroatom doped carbon materials have recently demonstrated an outstanding sodium storage ability and are being considered as the most promising candidate as anodes for sodium ion batteries. However, there is limited understanding of the relationship between structural and electronic properties and electrochemical storage capacity. First-principles calculations on a doped graphene cluster propose that N, S co-doping can promote the electronegativity, adsorption capacity of Na atoms and diffusion of Na+ ions on graphene sheets, especially for the sample consisting of more pyridinic-N, while excessive O atoms may alleviate these. All these features render N, S co-doped carbon as a superior anode for sodium ion batteries. Therefore, the N, S co-doped carbon nanosheets are fabricated via a simple thermal treatment method using gelatin as the carbon source and thiourea as the N and S precursor. The optimized product (mgelatin : mthiourea = 1 : 10) results in a superb cycling capacity of 300 mA h g−1 after 500 cycles, with a coulombic efficiency of ∼100%. This study provides a facile and reliable route to prepare co-doped carbon with enhanced sodium storage properties.

Graphical abstract: First-principles and experimental study of nitrogen/sulfur co-doped carbon nanosheets as anodes for rechargeable sodium ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
13 Jun 2016
Accepted
02 Sep 2016
First published
02 Sep 2016

J. Mater. Chem. A, 2016,4, 15565-15574

First-principles and experimental study of nitrogen/sulfur co-doped carbon nanosheets as anodes for rechargeable sodium ion batteries

Y. Qiao, M. Ma, Y. Liu, S. Li, Z. Lu, H. Yue, H. Dong, Z. Cao, Y. Yin and S. Yang, J. Mater. Chem. A, 2016, 4, 15565 DOI: 10.1039/C6TA04929J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements