Issue 36, 2016

Side-chain-type anion exchange membranes bearing pendant quaternary ammonium groups via flexible spacers for fuel cells

Abstract

To realize high performance anion exchange membranes (AEMs) for alkaline fuel cells (AFCs), a series of quaternized poly(ether sulfone)s (PESs) with different lengths of flexible spacers linking cationic groups and the backbone was synthesized via nucleophilic polycondensation, demethylation and Williamson reactions. Atomic force microscopy (AFM) phase images show clear hydrophilic/hydrophobic phase separation for all the side-chain-type AEMs. The PES-n-QA membrane with hexyleneoxy spacers (n = 6) between the cationic groups and backbone (benzene ring) exhibited the maximum conductivity of 62.7 mS cm−1 (IEC = 1.48 meq. g−1) at 80 °C. The AEM materials are found to have an improved long-term alkaline stability by extending the length of the flexible spacer (n ≥ 4). The PES-12-QA membrane with a flexible dodeceneoxy spacer demonstrated the highest alkaline stability, where the conductivity and IEC only decreased by 8.1% and 6.9% after immersing in a 1 M aqueous KOH solution at 60 °C for 720 h. Furthermore, the single fuel cell performance test using PES-6-QA as an AEM showed a maximum power density of 108.3 mW cm−2 at a current density of 250 mA cm−2 at 60 °C.

Graphical abstract: Side-chain-type anion exchange membranes bearing pendant quaternary ammonium groups via flexible spacers for fuel cells

Supplementary files

Article information

Article type
Paper
Submitted
17 Jun 2016
Accepted
11 Aug 2016
First published
12 Aug 2016
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2016,4, 13938-13948

Side-chain-type anion exchange membranes bearing pendant quaternary ammonium groups via flexible spacers for fuel cells

C. X. Lin, X. L. Huang, D. Guo, Q. G. Zhang, A. M. Zhu, M. L. Ye and Q. L. Liu, J. Mater. Chem. A, 2016, 4, 13938 DOI: 10.1039/C6TA05090E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements