Issue 37, 2016

Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX2, M = V, Nb, and Ta; X = S, Se, and Te)

Abstract

The revelation of MoS2 as an efficient electrocatalyst for the hydrogen evolution reaction (HER) has ratcheted up interest in other transition metal dichalcogenides (TMDs). To date, extensive studies have been focused towards semiconducting Group 6 TMDs while research into metallic Group 5 TMDs has been comparatively limited. Past computational screening of Group 5 TMDs showed propitious Gibbs free energy of the adsorbed hydrogen (ΔGH) for HER, especially for VS2, which prompted us to experimentally explore their HER efficiency. In addition to the HER electrocatalytic performance, we examine the inherent electrochemistry and the charge-transfer property of the entire set of Group 5 TMDs in the bulk form: VS2, VSe2, VTe2, NbS2, NbSe2, NbTe2, TaS2, TaSe2 and TaTe2. We demonstrate that the nine Group 5 TMDs show distinctive inherent electroactivities arising from their intrinsic electrochemical processes or surface oxides. TaS2 possesses the fastest heterogeneous electron transfer (HET) rate at 3.4 × 10−3 cm s−1 amongst the Group 5 TMDs and may be ideal for electrochemical sensing. Chalcogen dependence is evident in the electrochemical charge-transfer ability of the Group 5 TMDs whereby tellurides show slower HET rates than sulfides and selenides. We identify VTe2 as the best-performing material for HER contrary to the widely predicted VS2. VTe2 manifests the lowest HER overpotential at 0.5 V vs. RHE and Tafel slope of 55 mV dec−1. Interestingly, the HER performance of vanadium dichalcogenides and Group 5 tellurides shows chalcogen- and transition metal- dependence, respectively. Reasons behind their HER performance have also been proposed from our theoretical studies found on thermodynamics and kinetics. Broadly, the HER performances of bulk Group 5 TMDs are less outstanding than those expected despite being true metals. This fundamental study provides fresh insights into the electrochemical and electrocatalytic characteristics of metallic Group 5 TMDs that will be indispensable for the development of TMDs in future applications.

Graphical abstract: Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX2, M = V, Nb, and Ta; X = S, Se, and Te)

Supplementary files

Article information

Article type
Paper
Submitted
18 Jun 2016
Accepted
11 Aug 2016
First published
07 Sep 2016

J. Mater. Chem. A, 2016,4, 14241-14253

Author version available

Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX2, M = V, Nb, and Ta; X = S, Se, and Te)

X. Chia, A. Ambrosi, P. Lazar, Z. Sofer and M. Pumera, J. Mater. Chem. A, 2016, 4, 14241 DOI: 10.1039/C6TA05110C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements